Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in Vicia faba

نویسندگان

  • Yan Li
  • Shan-Shan Xu
  • Jing Gao
  • Sha Pan
  • Gen-Xuan Wang
چکیده

Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L.

Ultraviolet B (UV-B) radiation is an important environmental signal for plant growth and development, but its signal transduction mechanism is unclear. UV-B is known to induce stomatal closure via hydrogen peroxide (H(2)O(2)), and to affect ethylene biosynthesis. As ethylene is also known to induce stomatal closure via H(2)O(2) generation, the possibility of UV-B-induced stomatal closure via et...

متن کامل

Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba.

H(2)O(2) is an essential signal in absicic acid (ABA)-induced stomatal closure. It can be synthesized by several enzymes in plants. In this study, the roles of copper amine oxidase (CuAO) in H(2)O(2) production and stomatal closure were investigated. Exogenous ABA stimulated apoplast CuAO activity, increased H(2)O(2) production and [Ca(2+)](cyt) levels in Vicia faba guard cells, and induced sto...

متن کامل

Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells.

Here the regulatory role of CO during stomatal movement in Vicia faba L. was surveyed. Results indicated that, like hydrogen peroxide (H(2)O(2)), CO donor Hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proven by the addition of gaseous CO aqueous solution with different concentrations, showing the first time that CO and H(2)O(2) exhibit the simil...

متن کامل

Stomata Prioritize Their Responses to Multiple Biotic and Abiotic Signal Inputs

Stomata are microscopic pores in leaf epidermis that regulate gas exchange between plants and the environment. Being natural openings on the leaf surface, stomata also serve as ports for the invasion of foliar pathogenic bacteria. Each stomatal pore is enclosed by a pair of guard cells that are able to sense a wide spectrum of biotic and abiotic stresses and respond by precisely adjusting the p...

متن کامل

Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba.

One of the most important functions of the plant hormone abscisic acid (ABA) is to induce stomatal closure by reducing the turgor of guard cells under water deficit. Under environmental stresses, hydrogen peroxide (H(2)O(2)), an active oxygen species, is widely generated in many biological systems. Here, using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide eviden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014